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Automatic identification of Alzheimer’s Disease (AD) through magnetic

resonance imaging (MRI) data can e�ectively assist to doctors diagnose and

treat Alzheimer’s. Current methods improve the accuracy of AD recognition,

but they are insu�cient to address the challenge of small interclass and large

intraclass di�erences. Some studies attempt to embed patch-level structure

in neural networks which enhance pathologic details, but the enormous size

and time complexity render these methods unfavorable. Furthermore, several

self-attention mechanisms fail to provide contextual information to represent

discriminative regions, which limits the performance of these classifiers. In

addition, the current loss function is adversely a�ected by outliers of class

imbalance and may fall into local optimal values. Therefore, we propose a

3D Residual RepVGG Attention network (ResRepANet) stacked with several

lightweight blocks to identify the MRI of brain disease, which can also trade

o� accuracy and flexibility. Specifically, we propose a Non-local Context

Spatial Attention block (NCSA) and embed it in our proposed ResRepANet,

which aggregates global contextual information in spatial features to improve

semantic relevance in discriminative regions. In addition, in order to reduce

the influence of outliers, we propose a Gradient Density Multiple-weighting

Mechanism (GDMM) to automatically adjust the weights of each MRI image

via a normalizing gradient norm. Experiments are conducted on datasets from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Australian Imaging,

Biomarker and Lifestyle Flagship Study of Aging (AIBL). Experiments on both

datasets show that the accuracy, sensitivity, specificity, and Area Under the

Curve are consistently better than for state-of-the-art methods.

KEYWORDS

Alzheimer’s disease diagnosis, class-imbalance problem, classification network,

lightweight blocks, global contextual information, gradient density

1. Introduction

Alzheimer’s disease (AD) is an incurable neurodegenerative disorder

with the loss of tissues and death of nerve cells throughout the brain.

Clinically, the typical features of AD are memory impairment, executive

dysfunction, and aphasia, for example. As of 2018, patients with AD are
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generally over the age of 65 years, with a prevalence of

approximately 6%, while the death ratio due to AD has increased

by 145% (Alam et al., 2017; Wood, 2018). Therefore, the early

detection of AD is significant for patients and may help to

alleviate the risk and morbidity of AD. Many studies have

reported on auxiliary algorithms based on Machine Learning

(ML) methods to construct a system for the early detection

of AD and to recognize differences between AD and Normal

Cognitive function (NC).

Traditionally, ML algorithms are able to achieve automatic

classification tasks by learning complex and subtle biomarkers.

For instance, Moore et al. (2019) applied the Support Vector

Machine (SVM) classifier to identify patients with AD by

constructing a hyperplane to maximize the margin and

distinguish different features between AD and NC. In addition,

Ashburner and Friston (2000) proposed a Random Forest (RF)

tree to predict the probability of NC to AD at different time

intervals. These algorithms can initially distinguish between

MRI of AD and NC, but the semantic features extracted

by these encoders, such as SVM or RF trees, are weak

representations. This is an obstacle to improving the accurate

recognition of patients with AD. Therefore, further studies

have attempted to explore each scan for informative features to

improve the semantic features of the lesion, including voxel-

level, region-level, and patch-level. Specially, the voxel-level

methods (Khvostikov et al., 2018) used a t-test to select more

informative features of representing AD. However, the regular

ML algorithms mentioned are readily subject to overfitting,

increasing the challenge of AD recognition tasks in small

interclass and large intraclass differences.

Following trends in neural networks in medical image

analysis, some researchers have attempted to combine types of

neural networks with traditional ML methods to alleviate the

problem of overfitting (Billones et al., 2016; Rocca et al., 2018;

Yee et al., 2020). For instance, Rocca et al. (2018) employed a

two-dimensional (2D) neural network with a patch-level feature

selection strategy to divide the whole MRI into several patches,

improving feature discrimination to alleviate overfitting to some

extent. However, MRIs commonly consist of a large number of

patches, which slows down the detection speed. Therefore, Yee

et al. (2020) constructed a three-dimensional (3D) subject-level

network with a dilated module instead of an extended patch-

level feature selection strategy, to achieve high-level feature

extraction at high speed. Other studies have explored different

kinds of networks expanded by a subject-level network to apply

to AD classification tasks, includingDemNet, VoxCNN, residual

plain networks, and dense-like networks (Korolev et al., 2017;

Stoyanov, 2018; Cui and Liu, 2019). Some studies have found

that the full connection layer is largely ineffective in extracting all

the spatial information from the output of the network encoder.

Therefore, researchers have attempted alternative methods,

using extra module-like bidirectional long short-term memory

(Bi-LSTM) and bidirectional gated recurrent units (Bi-GRUs)

(Korolev et al., 2017; Stoyanov, 2018; Cui and Liu, 2019) into

fully connection layers to jointly learn spatial and longitudinal

features. Above all, current networks can achieve a more robust

performance thanML algorithms in recognizingMRIs with clear

lesion features, but they find it difficult to further distinguish

features between patients with AD and older patients with NC.

It is a challenge for the current networks to improve the accurate

identification of AD because the brain features of the elderly

are similar to some AD features. Therefore, some studies have

embedded an attention mechanism (Jin et al., 2019; Tong et al.,

2019; Alahmari, 2020; Cheng et al., 2020; Chen et al., 2021) to

improve relevant features and allow older patients with NC to be

more easily distinguished from patients with AD. For example,

Cheng et al. (2020) devised a Fully-Convolutional Attention

Network (FCANet) to segment chest X-rays effectively. This

network aggregated contextual biomarker information from

long-range and short-range distances. Meanwhile, Jin et al.

(2019) and Chen et al. (2021) proposed an Attention- ResNet

to incorporate spatial-awareness into each feature position and

enhance feature representation.

Overall, the attention networks described above are designed

to integrate fine-grained spatial information to focus on more

relevant features. However, the performance of the attention

networks is easily influenced by the data of the imbalance

category in practice. In particular, the number of patients with

AD is less than the number of NC subjects, which reduces the

capacity of AD feature extraction. Therefore, how to accurately

extract AD-related features to adapt to this category imbalance

has become key to improving model performance. Some studies

(Ouyang et al., 2020; Zhao et al., 2020) have attempted to design

an effective loss function to alleviate the problem of category

imbalance. For example, the focal dice loss was proposed by

Zhao et al. (2020) to reduce the contribution from easy samples,

enabling the model to focus on hard samples. In addition,

Ouyang et al. (2020) proposed a gradient-based online trainable

loss function instead of the focal dice loss to consider the

gradient of each MRI weight hard sample, which can efficiently

achieve a neural network with a robust attention mechanism in

typical conditions.

Generally speaking, the method can improve discriminative

features from different angles such as network structure,

different attention mechanisms, and loss function. They have

improved the performance of the models from the perspective

of feature discrimination and class-imbalance to alleviate the

challenge of small interclass and large intraclass differences.

However, the challenges are still remain. First, the common

classification networks fail to resolve the contradiction between

speed and accuracy in recognizing the MRI of Alzhemier’s

disease. Second, in the clinical setting, some local abnormal

regions (Alexiou et al., 2019) are influenced by patient factors

such as age and sex, for example. These factors decrease

the semantic relevance of the abnormal regions, making it

difficult for the current attention mechanism to recognize
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patients with AD. Finally, the current loss function of category

imbalance affected by outliers is associated with an increased

risk of trapping in the local optimum. Therefore, in order

to overcome these challenges and release the potential of

deep neural networks, we extended the 2D RepVGG training

model (Ding et al., 2021) to a 3D variant, and devised a

novel network that makes a tradeoff between speed (structure

of sufficiently light weight) and accuracy (ability to extract

semantic features). Thereafter, we embedded a novel self-

attention module to integrate a global context into the semantic

features, to alleviate the limitation of spatial information. The

outputs of our proposed network are fed into the newly class-

imbalance function we propose to balance the weights of each

MRI, including outliers via normalized gradient density inspired

by the gradient-based method proposed by Li et al. (2019). The

contributions of this article can be summarized as follows:

1. In order to be tradeoff the speed and accuracy, a 3D

Residual RepVGG Attention Network (ResRepANet) is

proposed. The ResRepANet consists of several lightweight

Blocks, called RepBlocks, and each of them can extract AD

features precisely.

2. To enhance the semantic relevance of discriminative regions

and decrease the influence of external factors such as age and

gender, we embedded a Non-local Context Spatial Attention

(NCSA) block in the proposed network. Specifically, this

block aggregates context and spatial features to enhance the

semantic of lesion features caused by brain atrophy.

3. We reveal a new strategy, called Gradient Density Multi-

weighting Mechanism (GDMM), to alleviate the influence

of outliers when the model is trained directly on class

imbalanced data. We applied the statistical gradient

histogram to understand the distribution of difficult samples

(outliers) and easy samples in each batch which can balance

the weights between outliers and easy samples dynamically.

The remainder of this article is organized as follows. Section

2 presents a description of the proposed method, and Section 3

summarizes our experimental results and their analysis. Finally,

Section 4 presents the conclusions of this study.

2. Methods

In this section, we provide the details of our proposed 3D

Residual RepVGG Attention Network (ResRepANet) in terms

of network architecture, NCSA, and GDMM. The architecture

of ResRepANet is shown in Figure 1, which aims to explore

the discriminative features of AD classification under class-

imbalance. First, the high-level features are encoded by several

ResRepBlocks and ResBlock which will be detailed in Section 2.1.

Then, the NCSA block is exploited to extract the context feature

and spatial feature of AD, as described in Section 2.2. Finally, in

Section 2.3, the GDMM is proposed to balance the gradient of

the model for each MRI and alleviate the influence of outliers.

In addition, details of the implementation of ResRepANet are

presented in Section 2.4.

2.1. The architecture of 3D residual
RepVGG attention network

Some researchers attempted that the complicated multi-

branch structures, such as ResNet and Inception module,

improve the feature discriminative of lesions, but slow down the

inference times (Ding et al., 2021). Specifically, these structures

with cross-layer connections reduce memory utilization. This

situation also exists in the field of medical image recognition,

where current deep learning networks hardly balanced the

speed and accuracy. We observe that the RepVGG can achieve

the high performance of classification tasks in ImageNet

whatever inference time or Identification accuracy. Specifically,

these structures with cross-layer connections reduce memory

utilization. This situation also exists in the field of medical

image recognition, where current deep learning networks hardly

balanced the speed and accuracy. Besides, this network applied

the same style of VGG and embedded the re-parameterization

method to decrease the inference time. Therefore, inspired by

this design, we first construct the basic module based on the

ResNet 3D with pretrained parameters. Then, we extended the

2D RepVGG training model to a 3D variant and devised a novel

network, called ResRepANet, to perform the MRI classification

task in Alzheimer’s disease. As can be seen in Figure 1, the

feature map X’ is extracted by the convolutional block with

kernel size 3 × 3 × 3 and the convolutional block with kernel

size 1 × 1 × 1 and generated two types of feature maps.

Subsequently, these features map are fused to the feature map

l1 by performing the operation of element-wise add. Besides,

the l1 feature map is extracted by three blocks, including two

types of convolutional block and batch normalization layers, and

outputs three feature tensors with the same shape, respectively.

Finally, these features map are merged to the feature map l′1
by performing the operation of element-wise add. Here are the

details of constructing the ResRepANet. First, MRIs are fed into

ResRepBlocks to extract the features of different resolutions.

Specifically, the structure of ResRepBlock consists solely of the

convolution block with kernel sizes 3 × 3 × 3 and 1 × 1 × 1 in

order to maintain the high speed of inference. The purpose of

designing this ResRepBlock is that the block can extract features

with different resolutions to generate different scales of semantic

information. This approach is suitable for the classification of

complex features such as the texture of brain contours. More

formally, the MRI of inputs is defined as X ∈ R
h×w×d while the

convolution modules f3×3×3 and f1×1×1 represent the kernel

sizes of 3× 3× 3 and 1× 1× 1, respectively. The feature map X′
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FIGURE 1

Illustration of the pipeline for Alzheimer’s Disease classification. The ResRepANet consists of several ResRepBlocks, ResBlock, and a Non-local

Context Spatial Attention (NCSA) block. (a) Structure of ResRepBlock, where the feature l1 extracted from the convolution module with kernel

size 3× 3× 3 and 1× 1× 1 as well as the feature l
′
1 extracted from two convolution modules and identity mapping.

is mapped by the f3×3×3 and batch normalization module fbn,

as shown in Figure 1.

X′
= fbn(f3×3×3(X)) (1)

Next, the feature map X′ is fed into two branches with f3×3×3

and f1×1×1 respectively, generating the output features l1 . The

output feature l1 is defined as follows and is aggregated by the

feature map with filtering by f3×3×3 and f1×1×1.

l1 = f3×3×3(X
′)+ f1×1×1(X

′) (2)

The feature map is passed through the activation function Relu

to improve generalization and then fed into the parallel structure

with three branches. Next, the output feature map l′1 is generated

by the output of the three branches, and the feature mapped

identity is defined from l1, with the summation of element-wise

as follows.

l′1 = f3×3×3(l1)+ f1×1×1(l1)+ fbn(l1) (3)

where fbn(l1) is a function of batch normalization.

Second, the NCSA block is subject to the feature Fres , which

is the feature map l′1 smoothed by the ResBlock. To aggregate

the context feature into the spatial feature, the NCSA block

is exploited to multiply the attention map with the context

features to enhance the relevance of each feature. Finally, the

output of the last ResRepBlock is input into the global average

pooling and used to predict the category probability, as shown in

Figure 1. The main reason for inserting a layer capable of global

average pooling is to progressively reduce the size of the spatial

representation. We next introduce the NCSA block and GDMM

in detail.

2.2. The structure of non-local context
spatial attention block

In general, the above variants of improvement strategies

have been derived for the attention mechanism, broadly

speaking for the channel domain, the spatial domain, the

hybrid domain, and self-attention mechanisms. They can

achieve robust performance in 2D medical image recognition

based on enhancing channel and spatial features. However, the

performance of the above attention structure is inhibited when

extracting the regions with low lesion recognition. Specifically,

some lesion regions, such as the lobe or hippocampus, appear to

have slight atrophy under the influence of Alzheimer’s disease.

Therefore, we proposed a novel attention structure, called Non-

local Context Spatial Attention block (NCSA block), to improve

the feature semantics of lesion regions. In this block, we first

construct the self-attention framework to generate basic feature

association space. Meanwhile, the global context extraction

module is embedded into the above framework to expand the

feature semantics of lesions, which further enhanced the extent

of region atrophy. Different from other combined attention

structures, the global context module is embedded in each

branch of the self-attention framework directly. The above

module can integrate the context feature to each region with

feature discriminative by the operation of the self-attention

mechanism. The details are shown in Figure 2. Specifically, three

filters are constructed to encode feature information at the

beginning of the NCSA block including a query branch filter

φ(·), a key branch filter θ(·), and a value branch filter δ(·). The

feature map Fres, as the input of the NCSA block, extracted

by ResBlock is fed into three filters and generated the feature

embedding Fφ , Fδ , and Fθ , respectively. Here, φ(·), θ(·), and δ(·)

are all the convolution blocks with kernel size f1×1×1.
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FIGURE 2

Illustration of Non-local Context Spatial Attention (NCSA) block. The NCSA block consists of the global context extraction module which

aggregated the global context to the spatial feature. Here, φ(·), θ (·), and δ(·) represent a query branch filter, a key branch filter, and a value branch

filter, respectively.

Furthermore, in order to strengthen context information of

feature embedding, we employed a global context extraction

module in each branch. As can be seen in Figure 2, we define

Gout
′′ as the global context feature. Here, we choose the feature

map from the Key branch as an example. Note that, the feature

map Fθ is mapped by the convolutional block with the kernel

size 1×1×1, and the receptive field has not changed. Therefore,

the feature map Fθ also contains the global position features.

The task of the global context extraction module is to activate

these position features and explore the context features. Here,

we design two steps to explore the global context feature from

the feature map Fθ . The first step is to enhance the position

feature from the spatial domain and the second step is to

improve the context feature in the channel domain. First of

all, the feature map Fθ is mapped by the convolutional block

with kernel size 1 × 1 × 1 and generates the feature map

with one channel. After that, we transform this feature with

the softmax function into a weight tensor. Subsequently, the

Gout is generated by performing a matrix multiply operation

with the original feature Fθ and the weight tensor and finishes

the first step of position enhancement in the spatial domain.

Second, the Gout is smoothed by the convolutional block with

kernel size 1 × 1 × 1. Here, the output channel of the feature

is the same as the input channel. Then, the layer normalization

module is proposed to normalize the featureGout
′ in the channel

dimension. After that, the adaptive average pooling is embedded

in the layer normalization module to integrate all of the spatial

features and generate the global context feature Gout
′′. Finally,

the F′
θ
is calculated by the Fθ to perform the operation of

broadcast element-wise multiplied with the Gout
′′ and finish the

second step of context enhancement in the channel domain. The

formula to complete this process is as follows:

Gout(xi) = Fθ ⊗

N∑

i=1

β(Gi) (4)

where i is an index of the output position N at which the

response of position feature Gi is to be computed. The global

attention weighting function β(Gi) can be defined as:

β(Gi) = eGi

/
N∑

m=1

eGm (5)

Second, we performed layer normalization to smooth the feature

of different channels and the output feature map G′
out , denoted

as follows:

G′
out = f1×1×1

{
LN

[
f1×1×1(Gout)

]}
(6)

Here, LN denotes the layer normalization module which can

normalize each channel of features. In order to transform the

position relevance between each feature to context information,

we utilized global average pooling Pavg to aggregate the position

feature map G′
out and mapping into the context feature map

G′′
out . Here, the shape of the context attention map G′′

out is

squeezed from four dimensions of the feature map (C,h,w,d)
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to two dimensions of the feature map (C, h × w × d). Next,

in order to integrate the context information into the feature

embedding and generate a more informative feature map, we

combined the context feature G′′
out with the feature embedding

Fθ by the operation of broadcast element-wise multiplication,

and generated the feature map F′
θ
. Here, we have finished the

second step of context enhancement in the channel domain. The

formula to complete this process is as follows:

G′′
out = Pavg(G

′
out) (7)

F′θ = G′′
out ⊙ Fθ (8)

Furthermore, the feature map F′
θ
with context feature is used

to explore relevance with the feature map Fφ generated from

a queue filter φ(·) and generated the feature map of related

position F′
θ×φ

as follows:

F′θ×φ = Fφ ⊗ (G′′
out ⊙ Fθ ) (9)

Here, this feature map can represent the similarity of each

feature, which can help the model to locate discriminative

regions. Finally, the output feature map Fatt ∈ ℜN×C is

considered the whole embedding space of position from F′
θ×φ

to locate the lesion regions based on the discriminative regions.

The formula to complete this process in view of Equations (4–9)

is as follows:

Fatt =
1

C(x)

∑

∀j

F′θ×φ(xi,xi)Fδ(xj) (10)

where x is the feature value of each feature map and j is the

index of each position in Fδ , while C(x) represents the response

factor from each feature value x. In summary, the NCSA block

is constructed from an embedding space to strengthen the

semantic relevance of each feature map. Each feature map in

this space can be explored using long-range dependence and

expanded context information, which improves representative

lesion regions in the MRI.

2.3. The design of gradient density
multi-weighting mechanism

The common loss function of class-imbalance is to adjust

the gradient by setting learnable hyperparameters. However, the

model is forcefully focused on the gradient variation of outliers

and trapped into a local optimum. Therefore, we propose the

GDMM to alleviate the influence of outliers inspired by the

gradient-based function. First, we collected gradients of each

MRI from the model as well as data on the gradient histogram

and divided the value of the histogram into 10 intervals. Second,

the number of each interval was calculated as the gradient

norm and generated to a region of the gradient norm. Third,

the gradient density was computed by the histogram of the

region of gradient norm and divided into ‘easy’ and ‘hard’, and

we performed normalization corresponding to the histogram.

Finally, we utilized the gradient density to reweight each MRI

to balance the gradient contribution between difficult (outlier)

and easy samples.

As is well known, the direction of model convergence is

decided by the extent of changed error between the value

predicted by the model and the ground-truth. Here, we first

defined the absolute error Etotal between the output of the

network ŷi and the ground-truth yi as the formula:

Etotal = S(̂yi)− yi (11)

where S(·) is the sigmoid activation function. In particular, this

activation function can squeeze the interval of output into the

range from zero to one. Next, we calculated the gradient to

measure how easy it is for the function to converge. We defined

grad to represent the error changes with respect to the value of

the weight:

grad =
∂(Etotal)

∂yi
=
∂(S(̂yi)− yi)

∂yi
(12)

Furthermore, we can analyze the gradient values to create

histograms that give an indication of the training situation. We

refer to such histograms as ‘gradient norms’. These gradient

norms are utilized to explore the data distribution to metric the

current situation of training. In particular, the hard samples were

presented with higher gradient norms than the easy samples.

If the value of gradient norms is maintained at high values,

it means that the model is falling into local optimum which

eventually leads to under-fitting. This situation is caused by the

class-imbalance problem in which the minor class of sample

features affects the sample distribution. In order to further

measure the degree of difficulty based on the gradient norm,

inspired by the white balance algorithm, we then introduced the

function GD(gradN ) to represent the gradient density of each

gradient norm, which can be expressed in the form:

GD(gradN ) =
1

ξ (grad)

N∑

n=1

ψ(gradn, grad) (13)

Here, gradn is the gradient norm of the n-th example. The

function ψ(·, ·) is an index function that is inferred the

probability of the predicted value belonging to the gradient

norm. The above function ψ(·, ·) can be expressed as follows:

ψ(gradn, grad) =




1 if grad −

ε

2
6 gradn 6 grad +

ε

2

0 otherwise
(14)
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Besides, the ξ (grad) yields the interval size of the gradient norm

which can be used to calculate the ratio of the gradient norm to

the overall gradient norm in the specified interval.

ξ (grad) = min(grad +
ε

2
, 1)−max(grad −

ε

2
, 0) (15)

where ε = 1e − 6. Here, the gradient density can measure

the intensity of gradient norms belonging to different intervals.

Next, the harmonizing weightsWN are further calculated based

on the gradient density, which can be balanced the gradient

norm:

WN =
N

GD(gradN )
(16)

where N is the total number of examples. This parameter can

then be incorporated into the classification loss function. Here,

the harmonizing parameterWN is similar to the learning rate of

the loss function and can enhance the rate at which the model

converges by considering the gradient density.

Finally, we utilized maximum entropy Fmax in our proposed

GDMM, as this loss can connect the most informative

gradient based on informative entropy to adjust the direction

of converging. This function keeps a stable sensitivity of

harmonizing weights WN which can avoid the influence of

outliers. Here, the process of GDMM can be represented as the

loss function Fsoft with embedded harmonizing parameters as

the formula:

Fsoft = −WN ∗ Fmax (17)

Specifically, the maximum entropy loss function, Fmax, can

formula as follows:

Fmax =

N∑

i=1

ŷi ∗ log (1+ e−yi )
−1

+ (1− ŷi) ∗ log

(
e−yi

1+ e−yi

)

(18)

Here, ŷi represents the i-th prediction output of our model while

yi is the ground-truth label of the classification task.

In summary, the GDMM is optimized by computing

harmonizing weights and weighting each batch of training

samples based on gradient density. More importantly, the

model can dynamically adjust itself by weighting multiple

batches, which can balance the sensitivity of the category

features between outliers and easy samples. This mechanism

can help the model find the best convergence direction without

applying oversampling.

2.4. Implementation

Our proposed method is an improvement on ResNet18,

whose structure is shown in Table 1. First, ResRepBlock-1 is

able to receive the MRI data and extract features from them

TABLE 1 Architectural specification of the ResRepANet.

Block Num

blocks

Input

channels

Output

channels

Output

size

ResRepBlock-1 1 48 48 61*73*61

ResRepBlock-2 1 48 48 31*37*31

ResRepBlock-3 1 48 96 16*19*16

ResRepBlock-4 1 96 192 8*10*8

ResBlock3D 4 192 192 4*5*4

NCSA Block 1 192 192 4*5*4

ResRepBlock-5 1 192 384 2*3*2

GAP 1 384 384 1*1*1

Linear 1 384 2 2

(via convolution) into a feature space with 48 channels. In

each block, we set the strides to be equal to two in order to

extract different resolutions of the feature map. Second, we

implemented four ResRepBlocks to extract different scales of

dense features. Finally, the global average pooling is employed

followed by a fully connected layer to aggregate the feature

map from ResRepBlock-4, which can align the shape to fully

connected layers. Then, the optimized hyperparameters of the

model, including learning rate and weight decay parameters,

were tested on the held-out Alzheimer’s Disease Neuroimaging

Initiative (ADNI) test dataset. To further verify the robustness

and generalizability of our model, we also evaluated our model

in the internal dataset (Australian Imaging, Biomarker, and

Lifestyle Flagship Study of Aging; AIBL). In the training stage,

all experiments reported were carried out with an 8-core 16-

thread AMD Ryzen 7 3700x CPU and 11GB GTX 2080 Ti GPU.

The deep-learning framework adopted was PyTorch ≥ 1.3.1

equipped with the Torchvision ≥0.4.2 software package.

3. Experiments

In this section, the effectiveness of our method is

investigated by carrying out several experiments. First, we

describe the datasets that are implemented (Section 3.1) and

introduce evaluation metrics (Section 3.2). Second, the analysis

of comparative experiments is introduced in detail (Section 3.3).

Third, the results of ablation experiments are presented (Section

3.4). Finally, the analysis of model performance is presented via

visualizing the feature map and heatmap (Section 3.5).

3.1. Datasets

(1) Data selection: Two datasets (i.e., ADNI and AIBL) were

derived from the Alzheimer’s Disease Neuroimaging Initiative

database (http://adni.loni.usc.edu) and the Australian Imaging,

Biomarker, and Lifestyle Flagship Study of Aging database
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(https://aibl.csiro.au). These datasets consist of T1-weightedMR

brain scans that have not been preprocessed, and which are the

type of image produced by most MR scanners. Since the main

objective of the study was to classify theMRI of patients with AD

and CN, only baseline subjects were taken into consideration.

In particular, the AIBL was collected at two centers (40% of

subjects from Perth in Western Australia, 60% fromMelbourne,

Victoria), which differs from the ADNI. We consider that

different sample distributions from different regions better

reflect the true generalizable situation, and selected AIBL as

the test set. Therefore, accordingly, the data that met the

following criteria were selected. Here, we first selected the

ADNI-1, ADNI-2 Initial Visit Dataset, and ADNI-3 Initial Visit

Dataset as the main datasets and the AIBL dataset as the test

dataset. Next, in order to address redundant subjects, such as

those with different modalities or with diagnosis records for

different visits, we selected the subjects with only a T1 modality

sample who were diagnosed as having AD dementia at the

baseline timepoint and maintained this for follow-up. The two

datasets (i.e., ADNI and AIBL) were all applied to evaluate

the performance and generalizability of our ResRepANet. The

allocation ratio between the training and validation set based

on ADNI is chosen to be 9:1. Specifically, the validation set was

used to tune the hyperparameters, and the weights were learned

during the training process.

(2) Data pre-processing: The selected data were then

preprocessed and underwent smoothing. Specifically, the spatial

normalization was done to warp the image into Montreal

Neurological Institute (MNI) space and assigned it to the same

resolution. The intensity normalization was then performed

by dividing each voxel intensity by the global average value.

Thereafter, images were further smoothed by a Gaussian kernel

with a full width at half maximum of 8 mm. All procedures

were implemented with SPM12 (Zhang et al., 2011). After

pre-processing, MRI scans were checked manually in order to

remove those subjects failed in the processing procedure. In

total, 1,251 baseline MRI images from ADNI constituted the

experimental dataset, amongwhich 419 subjects hadAD and 832

had NC. Demographic and clinical data of subjects is provided

in Table 2, in which MMSE stands for the Mini-Mental State

Examination. In addition, 531 baseline MRI images from AIBL

constituted the test dataset, among which 79 subjects had AD

and 451 had NC. In summary, the imbalance ratio between AD

and NC in the test part of ADNI was 1:3, compared with 1.7:10

for AIBL.

3.2. Experimental Settings

Our proposed method was verified on the AD classification

(AD vs. NC) task. We applied four metrics to evaluate

the classification performance, including accuracy (ACC),

sensitivity (SEN), specificity (SPE), and area under the receiver

TABLE 2 Demographic data of subjects included in the study.

Dataset Category Gender Age(years) MMSE

ADNI AD 234/185 76.6±7.4 21.2±4.5

CN 352/480 77.3±5.3 29.1±1.3

AIBL AD 30/49 73.4±7.8 20.5±5.7

CN 196/255 72.8±6.6 28.7±1.2

operating characteristic curve (AUC). Specifically, the ACC

means the ratio of the number of samples correctly predicted by

the model to the overall sample size. Besides, AUC is calculated

on all possible pairs of true positive rate and false positive rate

by changing the thresholds performed on the prediction results

from our trained network. We measure the model performance

by increasing the values of these indicators (ACC, SEN, SPE,

and AUC). Higher values indicate better model performance.

We set the number of training epochs to 300 and the batch

size to 8. Specifically, the initial learning rate is set to 1e-4 and

the speed of gradient descent is controlled via a warmup policy.

Meanwhile, the weight decay of 1e-8 and the momentum of 0.9

are implemented in the SGD optimizer.

3.3. Comparison with previous studies

In this section, we first compare the performance of

our proposed network with ML algorithms, including a

conventional method base on Region of Interest (ROI) (Liu

et al., 2012), voxel-level morphometry (VBM) (Ashburner and

Friston, 2000), and a patch-level method (PLM) (Penny et al.,

2007). Next, we considered the state-of-the-arts to illustrate the

effectiveness of our method in the deep learning field. In order to

further verify the generality of our method, we further evaluated

our method and its competing methods on AIBL. To ensure

the performance of our method and its competing methods can

compare in a fair manner, all experimental results were obtained

in the same experimental environments and same numbers

of subjects.

First, the results of the AD classification are shown in Table 3

including our method and its competing ML methods on the

test set from ADNI. For example, the patch-level methods (i.e.,

PLM) (Penny et al., 2007) all outperformed the voxel-level and

ROI-level methods (i.e., VBM; Ashburner and Friston, 2000 and

ROI; Liu et al., 2012). A possible reason is that the patch-level

feature representation can capture more informative features.

After that, our method reached better results on all four metrics

(i.e., ACC = 0.892, SEN = 0.903, SPE = 0.900, and AUC = 0.940)

in AD classification. Compared with the conventional patch-

level method (i.e., PLM), our method achieved considerably

better results for AD diagnosis. This may be because the feature
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TABLE 3 Comparison of our method with previous machine learning

studies (AD progression detection based on the ADNI dataset).

Method ACC SEN SPE AUC

ROI (Liu et al., 2012) 0.804 0.718 0.888 0.852

VBM (Ashburner and Friston,

2000)

0.816 0.756 0.875 0.883

PLM (Penny et al., 2007) 0.825 0.765 0.850 0.825

Ours 0.892 f0.903 0.900 0.940

TABLE 4 Comparison of our method with previous deep-learning

studies (AD progression detection based on the ADNI dataset).

Method ACC SEN SPE AUC

Yee et al. (2020) 0.804 0.803 0.823 0.889

Khvostikov et al. (2018) 0.822 0.821 0.837 0.885

Korolev et al. (2017) 0.804 0.803 0.824 0.876

Liu et al. (2018) 0.804 0.803 0.838 0.899

Cui et al. (2019) 0.839 0.839 0.842 0.899

Jin et al. (2019) 0.875 0.874 0.887 0.885

Esmaeilzadeh et al. (2018) 0.839 0.862 0.850 0.937

Feng et al. (2019) 0.785 0.765 0.799 0.857

Ours 0.892 0.903 0.900 0.940

map generated by our proposed method contains higher level

semantic information than the other methods.

Second, the performances on AD classification achieved by

our method and the deep learning methods on the test set

from ADNI are shown in Table 4. On one hand, Yee et al.

(2020), Esmaeilzadeh et al. (2018), and Khvostikov et al. (2018)

adopted 3D CNN structure with an accuracy per case of 90.1,

91.7, and 90.5% for AD classification, respectively. Among them,

the model from Esmaeilzadeh et al. (2018) produced slightly

better results than the other two. In contrast, our proposed

method achieved an accuracy 0.5% higher than the best results

using the above methods. From the above results, it can be

shown that the capacity of the backbone network to encode

features determines the upper limit of classification accuracy.

Specifically, this structure of our proposed ResRepBlock is more

suitable for feature extraction in Alzheimer’s disease to improve

feature discrimination. Besides, Jin et al. (2019) and Korolev

et al. (2017) proposed Attention-ResNet to improve feature

discrimination in order to compensate for its capacity for feature

encoding. As a result, the accuracy of the method from Jin

et al. (2019) is 7.1% higher than that of Korolev et al. (2017),

while the sensitivity is 5.3% higher than Korolev et al. (2017).

This demonstrates that an attention mechanism can strengthen

some relevant information of the feature map to a certain

extent, thereby improving the accuracy of the models. Our

proposed method outperformed the accuracy of Jin et al. (2019)

TABLE 5 Comparison of our method with previous machine learning

studies (AD progression detection based on the AIBL dataset).

Method ACC SEN SPE AUC

ROI (Liu et al., 2012) 0.793 0.519 0.863 0.796

VBM (Ashburner and Friston, 2000) 0.808 0.582 0.866 0.817

PLM (Penny et al., 2007) 0.839 0.722 0.870 0.846

Ours 0.922 0.829 0.855 0.889

TABLE 6 Comparison of our method with previous deep-learning

studies (AD progression detection based on the AIBL dataset).

Method ACC SEN SPE AUC

Yee et al. (2020) 0.901 0.754 0.826 0.903

Khvostikov et al. (2018) 0.905 0.720 0.874 0.763

Korolev et al. (2017) 0.896 0.756 0.806 0.896

Liu et al. (2018) 0.867 0.718 0.739 0.752

Cui et al. (2019) 0.879 0.662 0.789 0.771

Jin et al. (2019) 0.913 0.781 0.850 0.773

Esmaeilzadeh et al. (2018) 0.917 0.778 0.859 0.868

Feng et al. (2019) 0.905 0.824 0.811 0.764

Ours 0.922 0.829 0.855 0.889

and Korolev et al. (2017) by about 1.7 and 8.8%, respectively.

Although the current attention mechanism (Korolev et al., 2017;

Jin et al., 2019) can highlight some relevant information on

a feature map, it cannot locate more informative regions. In

contrast, the global context module embedded into our NCSA

block was intended to integrate the semantic information into

each feature map, this enables our model to be located the more

informative regions. On the other hand, the performance of Bi-

GRU (Cui et al., 2019) is better than that of FSBi-LSTM (Feng

et al., 2019), as can be seen in Table 4. As it is affected by category

imbalance, the discriminative capacity of Bi-GRU is less than

that of our model, so our accuracy is 5.3% higher than that of

Cui et al. (2019). Specifically, FSBi-LSTM extracts all the spatial

information from the featuremaps instead of the fully connected

layer which received feature maps with 200 channels via a linear

transformation. In contrast, Bi-GRU contained an update and

reset the gates jointly to learn spatial and longitudinal features

and train the disease classifier. Therefore, a reasonable structure

of the classifier plays an important role in the accuracy of

AD identification. Our proposed method with GDMM function

can achieve 4.3% higher accuracy than Cui et al. (2019) and a

sensitivity 90.3% higher than Cui et al. (2019), not only because

of the reasonable structure of the classifier but also because of the

efficient loss function to improve the robustness of the model.

Finally, to verify the generalizability of our method, we

further utilized an independent AIBL dataset to evaluate our

method and the competing methods, trained on the ADNI
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TABLE 7 Quantitative evaluation of ablation analysis for di�erent

attention structures in the ADNI dataset.

Structure ACC SEN SPE AUC

Backbone 0.839 0.838 0.839 0.903

Backbone+R 0.857 0.856 0.858 0.924

Backbone+R+S 0.875 0.874 0.879 0.928

Backbone+R+G 0.839 0.838 0.842 0.913

Backbone+R+NCSA 0.884 0.889 0.893 0.934

R reported as RepResBlock.

S reported as self-attention module.

G reported as global context module.

dataset. Observing the results of Tables 5, 6, we can see that our

proposed method generally outperforms the other competing

ML methods (i.e., ROI, VBM, PLM) in most metrics in both

AD-related diagnosis tasks. For example, it achieves an ACC of

0.922 for the AD progression detection task on the AIBL dataset

using the model trained on the ADNI dataset, which is better

than VBM (0.808), ROI (0.793), and PLM (0.839). The main

reason could be that using the discriminative features learned

by the NCSA block that can distinguish the patient with AD

in total AIBL. Noted that, the SEN of our proposed method

achieves 0.855 lower than the PLM. On one hand, the PLM

uses a block-level hierarchical extraction algorithm for each

block region. This model allows its local feature representation

ability more robust. In particular, the model considers that the

subject may have AD for some samples with some subtle atrophy

features by utilizing patch-level algorithms. These patch-level

algorithms can choose several discriminative patches to further

find out the difference between the normal entropy and lesioned

entropy. The model with higher specificity can help doctors

to distinguish the subject whether is normal elder or not. On

the other hand, the effect of gender mismatch between training

and testing datasets. Noted that All of the methods (i.e., ROI,

VBM, PLM, Our methods) are trained in ADNI with a male to

female ratio of 4:5, and then tested on the test set AIBL with

a male to female ratio of 3:4. The overall distribution of lesion

features also changed when the male to female ratio changed.

Our proposed method performed relatively consistently in

terms of global feature extraction capability but was weaker

than the PLM in terms of local features. Additionally, our

method still outperformed (Esmaeilzadeh et al., 2018; Jin et al.,

2019; Yee et al., 2020) on the AIBL dataset, with 2.1, 0.9,

and 0.5% improvement on accuracy for AD classification,

respectively. These comparative experiments indicate that our

method achieves the best AD classification results on the AIBL

dataset, surpassing the results from the state-of-the-arts (SOTA).

In conclusion, our proposed method can be adaptive to the

ADNI dataset and the AIBL dataset, achieving a more stable

performance than its competing methods.

TABLE 8 Quantitative evaluation of ablation analysis for di�erent loss

functions in the ADNI dataset.

Method ACC SEN SPE AUC

CE with label smooth 0.821 0.821 0.828 0.908

Focal loss 0.821 0.821 0.836 0.919

GHM 0.839 0.839 0.839 0.913

CE loss 0.884 0.889 0.893 0.934

GDMM 0.892 0.903 0.900 0.940

3.4. Ablation Study

To evaluate the effectiveness of the ResRepANet embedded

in our study, we further compared the proposed methods with

their direct counterparts; i.e., the model with only ResRepBlock,

the model only with the self-attention module, the model only

with the global context extraction module, and the model

with all modules. We evaluated these four methods on AD-

related diagnosis tasks, with results reported in Table 7. Here, we

designed our backbone inspired by ResNet18 and we compare

the performance between our backbone and the backbone

embedded with the ResRepBlock. First, the performance of

ResRepBlock can be seen in the first and second columns

in Table 7. The backbone embedded with the ResRepBlock

achieved metrics of the accuracy of 0.857, which is 1.8% higher

than the result of the backbone without any extra module.

It is for this reason that the dense features generated by

ResRepBlock are essential for improving feature discriminative.

Then, the backbone model combined with the self-attention

framework gives more accurate results (by 3.9%) compared

with the backbone combined with the global context extraction

module. Moreover, our final model is able to achieve an accuracy

of 88.4% and an AUC of 93.4%. Clearly, the current attention

module is barely adaptive to situations that are close in terms of

intraclass and far away in terms of interclass, with the extraction

of the global context or semantic feature only. In contrast, our

final model allows the positional relationship between pixels and

the semantic feature to be extracted simultaneously, which is key

to discovery of the discriminative features of the feature map.

The feature generated by our final model can be represented by

the regions where lesions (atrophy, deformation, etc.) appear.

In conclusion, two components are both needed; it is essential

that the performance of the attention module is strengthened as

much as possible to enable it to extract the necessary semantic

information. The best combination of methods is clearly the

backbone of NCSA.

In order to evaluate the model performance under category

imbalance, we compared five different loss functions (CE loss,

focal loss, GHM, CE loss with label smoothing, and our GDMM)

to investigate the effectiveness of the various strategies. As

can be seen in Table 8, our loss function (GDMM) yielded

an accuracy of 89.2%, sensitivity of 90.3%, and AUC value of
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FIGURE 3

Gradient density corresponding to di�erent loss functions: (A) CE loss function, (B) CE loss function with label smoothing, (C) Focal loss

function, (D) GHM, and (E) Our GDMM. Here, the x-axis represents the predicted value of the gradient norm from the model output, while the

y-axis is the number of the grad value set, which is the subtraction between the predicted value and label value that can assess the sample

di�culty level. We set two intervals to divide di�culty level, as 0–0.375 (easy sample region) and 0.375–0.5 (hard sample region) in our

experiments, with 0.375 as the median value in the predicted value sets.

TABLE 9 Comparison of inference time between our proposed

methods and other state-of-the-art methods (AD progression

detection based on the ADNI dataset).

Method ACC Times(ms)

Yee et al. (2020) 0.804 180

Khvostikov et al. (2018) 0.822 230

Korolev et al. (2017) 0.804 183

Liu et al. (2018) 0.804 205

Cui et al. (2019) 0.839 221

Jin et al. (2019) 0.875 176

Esmaeilzadeh et al. (2018) 0.839 171

Feng et al. (2019) 0.785 219

Ours 0.892 151

94%. In contrast, the CE loss function with label smoothing

only achieved an accuracy of 82.14% and an AUC of 90.8%.

These results imply that our strategy can be adapted well to this

imbalanced dataset. On one hand, our proposed GDMMapplied

a gradient-based strategy to normalize each batch of gradient

density which can alleviate the influence of outliers instead of

focal loss, while paying greater attention to outliers. On the other

hand, considering the challenge of small interclass and large

intraclass differences, we embedded maximum entropy into

GDMM to further improve the performance of the classifier. In

order to show the situation of model convergence, we visualized

the gradient norms from these loss functions, giving the results

shown in Figure 3.

The ease of convergence of the model is determined by

measuring the distribution of the gradient norm of the predicted

values. Specifically, the larger the prediction value, the larger

the current gradient and the larger the value of the gradient

norm. We estimate how well the current model is trained for

all samples by counting the gradient values for all samples

simultaneously and counting the histogram of these gradient

values. If the majority of the samples reflect relatively small

gradient values, the model has learned most of the sample

features. Specifically, first, we map all the gradient values to

0–1 by sigmoid. Second, we count the gradient norm of all

the gradient values at the last epoch. Finally, we classify the

difficulty region bound as 0.375, which is the midpoint of the

overall gradient norm range (according to the statistics, the
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FIGURE 4

Heatmap visualization of three views of an MRI from ResRepANet and its competing methods(upper panel) and discriminative regions identified

by ResRepANet on AD classification (lower panel). In lower panel (A) the Sagittal view of MRI and (B) the Axial view of MRI while the Coronal view

of MRI as (C) the heatmaps show the information suggested by attention weights, where the red color denotes the model focus on the regions

of locations. The red outlined boxes representing the thalamus belong to the temporal lobe, while the blue outlined boxes represent the

cerebral cortex belonging to the parietal lobe.

overall gradient norm has a maximum value of 0.5). Here, as

can be seen in Figure 3, the x-axis represents the gradient norm,

while the y-axis (with a log-scale) is the histogram belonging to

the gradient norm. The red outlined boxes are the represented

location of the specific regions of the sample distributions; the

interval from 0 to 0.375 corresponds to the region containing

samples that are easy to classify and the interval from 0.375

to 0.5 corresponds to the samples that are hard to classify.

Gradient density is generated by the distribution of a gradient

norm between the easy region and the hard region. In this

case, we can observe the situation of model performance, in

which the model can be adapted or not to a hard sample feature

by the histograms of gradient density between different loss

functions. Compared with the loss function of CE, loss with

smooth label and GDMM in Figures 3B,E, we can see that the

gradient density in the hard sample region is generally smaller

than those in the CE with label smoothing histogram. It can be

seen that the gradient norm of each sample is normalized by

GDMM, which can balance the weight effectively to decrease

the attention on outliers to some extent. Samples with a large

gradient density will be reduced, and the weight of samples with

a lower density will be increased, such that the various types

of samples have a more balanced contribution to the update

of model parameters. In summary, our proposed GDMM can

reduce the difficulty of model convergence based on adjusting

the gradient density dynamically.

We also compared the inference time between our proposed

method and its competing methods to fully demonstrate the

efficiency of our proposed method, as shown in Table 9. As

a result, under the same platform of NVIDIA GTX 1080TI

containing a single GPU, Jin et al. (2019) required 176

milliseconds (mms) to infer an unseen testing subject while

Korolev et al. (2017) required 183 mms. This is because the

methods of Jin et al. (2019) and Korolev (Korolev et al., 2017)

adapt the residual structure, which slows down the inference

speed. Similarly, the method of Khvostikov (Khvostikov et al.,

2018) utilized a two-stream structure with a large scale

convolution module, which is the main reason that it is the

slowest of all methods. The methods of Feng et al. (2019)

and Cui et al. (2019) reached an inference time of more than

200 ms due to the complex structures involved. Our proposed

method can achieve a time of 151 mms, which is faster than the

other methods. This is because the structure of our proposed

method consists of only convolution with kernel size 3×3×3
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FIGURE 5

Grad-CAM visualizations of the feature maps produced at di�erent stages by the RepResANet encoder parts. All channel features are derived

from one slice of the 3D MRI.

embedded into our proposed ResRepBlock, based on a re-

parameterization strategy that can achieve a better inference

speed while maintaining stable accuracy.

3.5. Visualization

The potential of clinical translation is important to

computer-aided diagnosis. One of the keys to the clinical

diagnosis of AD is to observe morphological changes in the

brain (i.e., to find abnormal atrophy areas of the brain). As

an auxiliary diagnostic approach, our proposed method can

automatically identify possible pathological locations in the

whole MR images, allowing doctors to find the regions of

interest for easy diagnosis. In other words, our method can

identify subject-specific discriminative pathological locations,

including relative discriminative regions in global images and

discriminative micro-structures in local patches.

1) Discriminative region locations: In order to show

discriminative regions directly, we utilized a Grad-CAM
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(Selvaraju et al., 2019) image to visualize the locations mapped

by the convolution feature activations. The discriminative

regions are marked from the perspective direction of three

views, respectively, and heatmaps were generated to visualize

the situation. These heatmaps can show low-to-intermediate

implementation difficulties, and their level of interpretability

(Ntelios et al., 2012). As can be seen in Figure 4 on the upper

panel, the heatmaps generated by our proposed method clearly

show that the regions of the thalamus and the regions of the

cerebral cortex are mainly covered (Figure 4; lower panel). It

can be demonstrated that our proposed methods can distinguish

patients with AD precisely by learning the features of the

thalamus and cerebral cortex. This is because changes in the

thalamus and cerebral cortex are responsible for accessing

memory and the capacity for language, which is often one of

the first functions to decline noticeably in AD. In contrast, the

heatmaps generated by other methods cannot fully cover the

efficient locations. For example, Jin et al. (2019) only focused

on the thalamus regions, while the attention map of Khvostikov

et al. (2018) only distinguished the region of the cerebellum. It is

for this reason that the dense features generated by ResRepBlock

can better reflect phenotypic lesion characteristics.

2) Feature map visualization: In order to observe the

process of generating attention maps, we further visualized

the coronal view of a feature map in the encoder of our

proposed model. According to the structure of ResRepANet,

we visualized the process in four stages, as shown in Figure 5.

The input sample with one channel is convoluted at stage 0 and

generated 48 feature maps with different feature representations.

As the network deepens, the feature maps extracted by each

ResRepBlock become increasingly abstracted. The visualization

process reveals two interesting facets. On one hand, the feature

maps generated by stages 0 and 1 can be seen to contain

information about contours and the whole of the intracranial

region. We can draw a conclusion that our network with its

NCSA block can correctly extract representative features. On the

other hand, stages 2 and 3 extracted further features from the

images generated by stage 1. These modules are responsible for

analyzing local features and can be applied initially to produce

semantic information.

4. Conclusion

In this article, we describe a 3D Residual RepVGG Attention

Network (ResRepANet) for the classification of AD to trade

off accuracy and speed. The core contribution of this attention

network is the NCSA block, which improves the accuracy of the

AD classification process. The NCSA block can explore the long-

range spatial relevance, and yields a significant performance

improvement over an already strong baseline. We also propose

a GDMM based on the gradient norm to alleviate the issue

of category imbalance. A series of comprehensive experimental

tests on an ADNI dataset and an AIBL dataset show that our

network achieves a new state-of-the-art performance. However,

the approach we propose still has some limitations. For example,

the feature maps are more redundant, which is extracted from

our proposed ResRepANet (Figure 5; first column). Therefore,

we will consider strategies to improve the situation, such as

GhostNet. We also intend our proposed ResRepANet to expand

its application to other vision-related tasks.

Data availability statement

The datasets generated during the current study are not

publicly available due to the privacy of medical data but are

available from the website of Alzheimer’s Disease Neuroimaging

Initiative (https://adni.loni.usc.edu/) on reasonable request.

Author contributions

ZC: conceptualization, methodology, and writing-original

draft preparation. ZW: writing-reviewing and editing. MZ: data

curation. QZ: software. XL: validation. JL: investigation. XS:

supervision. All authors contributed to the article and approved

the submitted version.

Funding

This work was sponsored in part by the Key-Area

Research and Development Program of Guangdong

Province under Grant 2019B010109001, Guangdong

Natural Science Foundation under Grant 2020A1515011409,

Construction Project of Regional Innovation Capability

and Support Guarantee System in Guangdong Province

under Grant 2021A1414030004, and Provincial

Agricultural Science and Technology Innovation and

Extension Project of Guangdong Province under

Grant 2022KJ147.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2022.807085
https://adni.loni.usc.edu/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2022.807085

References

Alahmari, F. (2020). A comparison of resampling techniques for medical
data using machine learning. J. Inf. Knowl. Manag. 19, 2040016:1–2040016:13.
doi: 10.1142/S021964922040016X

Alam, S., Kwon, G.-R., Kim, J.-I., and Park, C. (2017). Twin svm-based
classification of alzheimer’s disease using complex dual-tree wavelet principal
coefficients and lda. J. Healthc Eng. 2017, 8750506. doi: 10.1155/2017/8750506

Alexiou, A., Kamal, M., and Ashraf, G. (2019). Editorial: the alzheimer’s disease
challenge. Front. Neurosci. 13, 768. doi: 10.3389/fnins.2019.00768

Ashburner, J., and Friston, K. J. (2000). Voxel-basedmorphometry’ themethods.
Neuroimage 11, 805–821. doi: 10.1006/nimg.2000.0582

Billones, C. D., Demetria, O. J. L. D., Hostallero, D. E., and Naval, P. C. (2016).
“Demnet: a convolutional neural network for the detection of alzheimer’s disease
and mild cognitive impairment,” in 2016 IEEE Region 10 Conference (TENCON)
(Singapore: IEEE), 3724–3727.

Chen, Y., Zhang, H., Wang, Y., Yang, Y., Zhou, X., and Wu, Q.
M. J. (2021). Mama net: multi-scale attention memory autoencoder
network for anomaly detection. IEEE Trans. Med. Imaging 40, 1032–1041.
doi: 10.1109/TMI.2020.3045295

Cheng, J., Tian, S., Yu, L., Lu, H., and Lv, X. (2020). Fully convolutional
attention network for biomedical image segmentation. Artif. Intell. Med. 107,
101899. doi: 10.1016/j.artmed.2020.101899

Cui, R., and Liu, M. (2019). Hippocampus analysis by combination of 3-d
densenet and shapes for alzheimer’s disease diagnosis. IEEE J. Biomed. Health
Inform. 23, 2099–2107. doi: 10.1109/JBHI.2018.2882392

Cui, R., Liu, M., and Initiative, A. D. N. (2019). Rnn-based longitudinal analysis
for diagnosis of alzheimer’s disease. Comput. Med. Imaging Graph. 73, 1–10.
doi: 10.1016/j.compmedimag.2019.01.005

Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., and Sun, J. (2021). “Repvgg:
making vgg-style convnets great again,” in 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 13728–13737.

Esmaeilzadeh, S., Belivanis, D. I., Pohl, K. M., and Adeli, E. (2018). End-to-
end alzheimer’s disease diagnosis and biomarker identification.Mach. Learn. Med.
Imaging 11046, 337–345. doi: 10.1007/978-3-030-00919-9_39

Feng, C., Elazab, A., Yang, P., Wang, T., Zhou, F., Hu, H., et al. (2019). Deep
learning framework for alzheimer’s disease diagnosis via 3d-cnn and fsbi-lstm.
IEEE Access 7, 63605–63618. doi: 10.1109/ACCESS.2019.2913847

Jin, D., Xu, J., Zhao, K., Hu, F., Yang, Z., Liu, B., et al. (2019). “Attention-
based 3d convolutional network for alzheimer’s disease diagnosis and biomarkers
exploration,” in 2019 IEEE 16th International Symposium on Biomedical Imaging
(ISBI 2019) (Venice: IEEE), 1047–1051.

Khvostikov, A., Aderghal, K., Benois-Pineau, J., Krylov, A. S., and Catheline, G.
(2018). 3d cnn-based classification using smri and md-dti images for alzheimer
disease studies. ArXiv, abs/1801.05968. doi: 10.48550/arXiv.1801.05968

Korolev, S., Safiullin, A., Belyaev, M., and Dodonova, Y. (2017). “Residual and
plain convolutional neural networks for 3d brain MRI classification,” in 2017 IEEE

14th International Symposium on Biomedical Imaging (ISBI 2017) (Melbourne,
VIC: IEEE), 835–838.

Li, B., Liu, Y., andWang, X. (2019). “Gradient harmonized single-stage detector,”
in AAAI’19/IAAI’19/EAAI’19 (Hawaii, HI: AAAI Press).

Liu, M., Zhang, D., and Shen, D. (2012). Ensemble sparse
classification of alzheimer’s disease. Neuroimage 60, 1106–1116.
doi: 10.1016/j.neuroimage.2012.01.055

Liu, M., Zhang, J., Adeli, E., and Shen, D. (2018). Landmark-based deep
multi-instance learning for brain disease diagnosis.Med Image Anal. 43, 157–168.
doi: 10.1016/j.media.2017.10.005

Moore, P. J., Lyons, T., and Gallacher, J. E. J. (2019). Random forest prediction
of alzheimer’s disease using pairwise selection from time series data. PLoS ONE 14,
e0211558. doi: 10.1371/journal.pone.0211558

Ntelios, D., Berninger, B., and Tzimagiorgis, G. (2012). Numb and alzheimer’s
disease: the current picture. Front. Neurosci. 6, 145. doi: 10.3389/fnins.2012.00145

Ouyang, X., Huo, J., Xia, L., Shan, F., Liu, J., Mo, Z., et al. (2020).
Dual-sampling attention network for diagnosis of COVID-19 from
community acquired pneumonia. IEEE Trans. Med. Imaging 39, 2595–2605.
doi: 10.1109/TMI.2020.2995508

Penny,W., Friston, K., Ashburner, J., Kiebel, S., andNichols, T. (2007). Statistical
parametric mapping: the analysis of functional brain images.

Rocca, M. L., Amoroso, N., Bellotti, R., Monaco, A., and Tangaro, S. (2018). 24.
Alzheimer pattern recognition in brain images using complex networks. Physica
Medica 56, 76. doi: 10.1016/j.ejmp.2018.04.034

Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., and Batra,
D. (2019). Grad-cam: visual explanations from deep networks via gradient-based
localization. Int. J. Comput. Vis. 128, 336–359. doi: 10.1007/s11263-019-01228-7

Stoyanov (2018). “Graphs in biomedical image analysis and integrating medical
imaging and non-imaging modalities,” in Lecture Notes in Computer Science. Xian.

Tong, Q., Li, C., Si, W., Liao, X., Tong, Y., Yuan, Z., et al. (2019). Rianet:
recurrent interleaved attention network for cardiac mri segmentation. Comput.
Biol. Med. 109, 290–302. doi: 10.1016/j.compbiomed.2019.04.042

Wood, I. C. (2018). The contribution and therapeutic potential of
epigenetic modifications in Alzheimer’s disease. Front. Neurosci. 12, 649.
doi: 10.3389/fnins.2018.00649

Yee, E., Ma, D., Popuri, K., Wang, L., and Beg, M. F. (2020). Construction
of mri-based alzheimer’s disease score based on efficient 3d convolutional neural
network: comprehensive validation on 7,902 images from a multi-center dataset. J.
Alzheimers Di. 79, 47–58. doi: 10.3233/JAD-200830

Zhang, D., Wang, Y., Zhou, L., Yuan, H., and Shen, D. (2011). Multimodal
classification of alzheimer’s disease and mild cognitive impairment. NeuroImage
55, 856–867. doi: 10.1016/j.neuroimage.2011.01.008

Zhao, R., Qian, B., Zhang, X., Li, Y., Wei, R., Liu, Y., et al. (2020). “Rethinking
dice loss for medical image segmentation,” in 2020 IEEE International Conference
on Data Mining (ICDM) (Sorrento: IEEE), 851–860.

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2022.807085
https://doi.org/10.1142/S021964922040016X
https://doi.org/10.1155/2017/8750506
https://doi.org/10.3389/fnins.2019.00768
https://doi.org/10.1006/nimg.2000.0582
https://doi.org/10.1109/TMI.2020.3045295
https://doi.org/10.1016/j.artmed.2020.101899
https://doi.org/10.1109/JBHI.2018.2882392
https://doi.org/10.1016/j.compmedimag.2019.01.005
https://doi.org/10.1007/978-3-030-00919-9_39
https://doi.org/10.1109/ACCESS.2019.2913847
https://doi.org/10.48550/arXiv.1801.05968
https://doi.org/10.1016/j.neuroimage.2012.01.055
https://doi.org/10.1016/j.media.2017.10.005
https://doi.org/10.1371/journal.pone.0211558
https://doi.org/10.3389/fnins.2012.00145
https://doi.org/10.1109/TMI.2020.2995508
https://doi.org/10.1016/j.ejmp.2018.04.034
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1016/j.compbiomed.2019.04.042
https://doi.org/10.3389/fnins.2018.00649
https://doi.org/10.3233/JAD-200830
https://doi.org/10.1016/j.neuroimage.2011.01.008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	A new classification network for diagnosing Alzheimer's disease in class-imbalance MRI datasets
	1. Introduction
	2. Methods
	2.1. The architecture of 3D residual RepVGG attention network
	2.2. The structure of non-local context spatial attention block
	2.3. The design of gradient density multi-weighting mechanism
	2.4. Implementation

	3. Experiments
	3.1. Datasets
	3.2. Experimental Settings
	3.3. Comparison with previous studies
	3.4. Ablation Study
	3.5. Visualization

	4. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


